
1.  Introduction
The water uptake capacity of atmospheric aerosol particles impacts air quality and climate, by affecting the ra-
diative forcing, visibility, and the ability to serve as cloud condensation nuclei (CCN; Hudson & Clarke, 1992; 
Qi et al., 2018). Organic compounds account for a large fraction (20% ∼ 90%) of the total fine aerosol mass in 
the troposphere, but the water uptake capacity of organic aerosol (OA) is poorly known because of the pres-
ence of diverse organic species (Zhang et al., 2015). Some field studies estimated the water uptake capacity 
of OA using overall hygroscopicity of particles obtained from cloud condensation nuclei counter measure-
ments and chemical composition based on κ-Kӧhler theory (Petters & Kreidenweis, 2007), showing that the 
hygroscopicity parameter (κ) of OA varies considerably from 0.03 to 0.3 because of the presence of different 
OA constituents (Chang et  al.,  2010; Deng et  al.,  2018; Mei et  al.,  2013). The hygroscopicity of OA varies 
largely depending on the chemical composition, types and emissions of gas precursors under different envi-
ronmental conditions (Fan et al., 2020; Zhang et al., 2015). While OA with a higher degree of oxidation (e.g., 
highly-oxidized oxygenated OA) is typically hygroscopic (Qiu et al., 2020), there is large uncertainty about the 
hygroscopicity of OA with a lower degree of oxidation (e.g., less-oxidized oxygenated OA). Specifically, Xiao 
et al. (2011) found that 61% of the less-oxidized oxygenated OA in Guangzhou, China, is water-soluble, while 
Timonen et al. (2013) estimated that only 14% of less-oxidized oxygenated OA is water-soluble in Helsinki, 
Finland, using a similar method. The water solubility of primary sources of OA, such as the biomass burning 
and coal combustion OA, or aqueous-oxygenated OA, were investigated in urban Beijing (Hu et al., 2020; Qiu 
et al., 2019). However, a more quantitative investigation of the OA from different sources has been lacking.

OAs are produced both from primary emissions (e.g., primary OA or POA) and secondary formation 
(e.g., secondary OA or SOA). There exist two distinct growth mechanisms for OA formation, that is, 
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condensation/partitioning of low-to-intermediate products from volatile organic compounds (VOCs) pho-
tooxidation (Shrivastava et al., 2017) and aqueous processes including hydration, oligomerization, and ac-
id-catalyzed reactions (Gomez et al., 2015; Xu et al., 2014; Zhang et al., 2015; Zhao et al., 2006). Laboratory 
experimental studies revealed that photooxidation products of VOCs enhances the particles hygroscopicity 
in varying degrees depending on the VOC types (e.g., Khalizov et al., 2013; Qiu et al., 2012; Guo et al., 2016), 
but oligomerization from aqueous reactions decreases the hygroscopicity (Xu et al., 2014). The studies sug-
gest that, while photooxidation and oligomerization both increase the oxidation degree (i.e., an increasing 
O:C ratio), the two processes may lead to distinct hygroscopicity of OA. In addition, acid-base reactions, such 
as those between organic acids and amines, also enhance hygroscopicity (Gomez-Hernandez et al., 2016). 
In the atmosphere, VOCs oxidation from natural and anthropogenic sources leads to distinct product dis-
tributions (Zhang et al., 2015), and hygroscopicity of the products with multifunctional groups (i.e., with 
the carboxylic and hydroxyl functionalities, or glyoxal and methylglyoxal) are expected to be variable. For 
example, previous field study suggested that a decrease in hygroscopicity of OA due to the formation of bi-
ogenic SOA (formed from photooxidation of biogenic VOCs) during new particle formation (NPF) in forest 
region (Deng et al., 2018); Several other observations in urban atmosphere showed an enhanced aerosols 
water uptake capacity and CCN activity correlates with NPF events (Lance et al., 2013; Wu et al., 2016), but 
these studies discussed only the particles overall hygroscopicity, have not focused on the OA hygroscopicity 
yet. Currently, there is still a lack of understanding of the water uptake capacity for OA from multiple an-
thropogenic sources in polluted urban atmosphere. The OA dominates ambient fine composition in Beijing, 
with a mass fraction of 40–51% (Guo et al., 2014; Sun et al., 2015; Wang et al., 2016), and the composition of 
aerosol is complex due to both primary sources and secondary gas-to-particle conversion (Guo et al., 2014; 
Li et al., 2020; Ren et al., 2018; Zhang et al., 2015, 2019, 2020). With the aim of obtaining insights of the links 
between hygroscopicity of OA and its growth mechanisms, in this study, we retrieve and characterize the 
hygroscopic parameter of OA (κorg) by using field campaign observed data of hygroscopic growth factor and 
chemical composition in urban Beijing. We focus on contrasting the κorg between NPF and non-NPF events 
respectively in order to understanding the effect of different formation processes on hygroscopicity of OA.

2.  Field Measurements and Methods
Field measurements of aerosol physical and chemical properties were conducted at the Institute of Atmos-
pheric Physics (IAP) of Beijing during summer 2017. The measurements at the sampling site represent of 
typical pollution conditions in urban Beijing (Sun et al., 2015). The sampling period covered May 19 to June 
18, 2017. A Scanning Mobility Particle Sizer (SMPS) was used to measure particle number distribution in 
the size range of 10–600 nm. The SMPS consisted of a long differential mobility analyzer (DMA; model 
3081A, TSI Inc.) and a condensation particle counter (CPC; model 3775, TSI Inc.). The Hygroscopic Tandem 
Differential Mobility Analyzer (HTDMA) system was used to measure the hygroscopic growth factor (Gf) 
of particle. The HTDMA used in this study has been described previously (Fan et al., 2020; Levy et al., 2013; 
Wang et al., 2017; Zhang et al., 2017). In this study, the selected dry diameters were 40, 80, 110, 150, and 
200 nm, respectively. A Nafion humidifier was used to humidify the quasi monodisperse particles to the 
specified relative humidity (90% RH). RH calibration was performed periodically with ammonium sulfate 
to maintaining RH within 90% ± 0.5%. A method developed by Gysel et al. (2009) was used to retrieve the 
Gf probability density function (PDF).

Non-refractory size-resolved submicron aerosol composition of Non-Refractory particulate matter (NR-PM1 
with diameter < 1 μm), including organics (Org), sulfate (SO4), nitrate (NO3), ammonium (NH4), and chlo-
ride (Chl), was measured with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-
ToF-AMS) (Xu et al., 2015). Positive matrix factorization (PMF) analysis was performed to separate organic 
aerosol factors quantitatively by grouping the mass spectrometry and temporal variation for the purpose 
of source apportionment (Xu et al., 2017; Zhang et al., 2011). The ratio of oxygen to carbon (O:C) was de-
termined by using an elemental analysis approach (Aiken et al., 2007). A five-factor solution was selected, 
including three SOA factors namely highly-oxidized oxygenated OA, less-oxidized oxygenated OA, and oxi-
dized POA and two POA factors from hydrocarbon-like and cooking OA. The oxidized POA factor is related 
to higher signals of CO2

+ and its spectrum is dominated by CxHy
+, indicating this kind of SOA is from the 

direct oxidation of POA (Xu et al., 2019), so it is named as oxidized POA. More details about operation of 

LIU ET AL.

10.1029/2020GL091683

2 of 10



Geophysical Research Letters

the HR-AMS and PMF analysis can be found in supporting information (SI: Methods). We combined the 
bulk mass fraction of black carbon (BC) particles measured by a 7-wavelength aethalometer (AE33, Magee 
Scientific Corp; Zhao et al., 2017) with size-resolved BC distribution measured by a single particle soot pho-
tometer (SP2) in Beijing to obtain the size-resolved volume fraction of BC (Liu et al., 2019).

In this study, we use size-resolved κ derived from measured Gf to calculate the size-resolved κorg based on 
the mixing rule with the size-resolved aerosol chemical compositions measured by AMS (Petters & Kreid-
enweis, 2007). The detailed calculation methods are presented in the supporting information (SI: Methods). 
Because the inversion involves measurements from HTDMA and AMS, we conducted a total mass closure 
to compare the mass concentration of PM1 measured by the two techniques, which are well consistent dur-
ing the field campaign (Figure S1).

3.  Results and Discussion
3.1.  κorg on NPF and non-NPF Days

NPF events, which are characterized by a distinct “banana” shape in the time series of particle number size 
distribution (PNSD), occur frequently during the campaign (Figure 1a and Figure S2). In this study, with 
criteria of that, a distinct new mode of particles appears in the PNSD and prevails for more than an hour 
showing continuous growth (Dal Maso et al., 2005), typical NPF events occurred on 10 days, accounting for 
approximately 42% days during the entire period. The κorg between NPF and non-NPF days is contrasted to 
evaluate the effect of different particle formation processes on hygroscopicity of OA.

The averaged diurnal variations of the PNSD, κorg of different particle size on NPF days and non-NPF days 
are shown in Figure 1a. The obvious banana-shaped profile occurred around noontime and early afternoon 
(9:00–17:00 Local Time; LT) and is indicative of NPF (Figure 1a). The mean κorg increases significantly when 
NPF occurs, while there is no increase in κorg around noontime on non-NPF days (Figure 1a), particularly 
for the 40 nm particles. Compared with non-NPF days, the κorg for 40–200 nm are noticeably higher on NPF 
days, with the largest disparity for 40 nm particles (Figure 1b) that is closely related to NPF. This suggests 
that the nucleation generates more hygroscopic OA. As a result, the κorg is relative independent on particle 
size on NPF days when the nucleation enhanced the κorg. On non-NPF days, the κorg shows increase with 
increase of particle size because the larger particles are generally internally mixed and more aged and hy-
groscopic (Chen et al., 2020; Zhang et al., 2014). The mean bulk κorg is 0.19 ± 0.07 and 0.11 ± 0.07 on NPF 
and non-NPF days, respectively, corresponding to a remarkable increase of 73% in κorg and 20% in the overall 
hygroscopicity, κbulk (Table S1). Figure 1b shows that the volume fractions of less-oxidized oxygenated OA, 
hydrocarbon-like OA, and cooking OA are similar between NPF days and non-NPF days, while the frequen-
cy distribution of volume fraction of highly-oxidized oxygenated OA exhibits a significant shift from left to 
right, showing an increase from 15%-25% on non-NPF days to 20%-35% on NPF days (Figure 1c), accompa-
nying with a decrease of volume fraction of oxidized POA from non-NPF to NPF days. This indicates that 
the NPF yield more highly-oxidized oxygenated OA. The “banana” type of NPF typically occurs under clear 
conditions with strong ultraviolet radiation (UV) and low RH (Figure S3) conditions. The mass loadings of 
SOA on NPF days highly depends on Ox (Ox = NO2 + O3) (Figure 1d), a conserved tracer of photochemical 
processing (Herndon et al., 2008; Xu et al., 2017). While, on non-NPF days, it closely depends on RH (Fig-
ure 1d). Therefore, nucleation due to the photooxidation of VOCs and subsequent growth of the nucleated 
particles generates large amounts of more water-soluble organic components, such as organic acids (Guo 
et al., 2020; Qiu et al., 2012), likely explaining the enhanced water uptake capacity of OA. On the other 
hand, non-NPF events typically correspond to polluted conditions with low UV and high RH (Figure S3; 
Guo et al., 2020), and oligomerization via aqueous reactions likely represents a key pathway for OA growth 
(Gomez et al., 2015; Zhao et al., 2006). This provides an explanation for the less hygroscopicity of OA during 
non-NPF events since primary OA (i.e., POA, hydrocarbon-like OA, and cooking OA) likely experiences 
significant growth by aqueous reactions to form less water-soluble oligomers (Xu et al., 2014). Our results 
indicate that NPF in polluted urban atmosphere, which is primarily driven by photochemical oxidation of 
anthropogenic VOCs (Guo et al., 2020), generates more hygroscopic OA. Another earlier study showed a 
weakened hygroscopicity of OA during NPF in a forest region area, where the newly formed particles are 
mainly formed from biogenic SOA (Deng et al., 2018), implying plausible effects of different NPF sources 
on hygroscopicity of OA.
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3.2.  Dependence of the κorg on Volume Fraction of OA

The dependence of κorg on the changes of the volume fraction of different kinds OA on NPF and non-NPF 
days is shown (Figure 2). The bulk κorg increases monotonically (with a correlation coefficient, R2, of >0.65 
from different fits methods) from ∼0.1 to ∼0.22, when the volume fraction of highly oxidized oxygenated 
OA increases from ∼18% to 27% (Figure 2a). On the other hand, an increase of κorg with the volume fraction 
of less-oxidized oxygenated OA and oxidized POA are not apparent (Figure 2b and 2c). The remarkably 
larger κorg always occurs during NPF events. In other words, OA from NPF exhibits the largest water uptake 
capacity, independent on changes in the fraction of the less-oxidized oxygenated OA and oxidized POA. 
Those results again indicate the critical role of nucleation process in enhancing the κorg, while the aqueous 
oligomerization during non-NPF events yields less water-soluble products (e.g., oligomers; Xu et al., 2014). 
As a result, it shows that the hygroscopicity of highly-oxidized oxygenated OA is generally 2.5 and 5-folds of 
those of oxidized POA and less-oxidized oxygenated OA, respectively, illustrated by the slopes from a linear 
correlation analysis during the whole campaign (Figure 3). In addition, the increases of volume fraction of 
hydrocarbon-like OA and cooking OA result in decreasing κorg. Note that, although both the cooking OA 
and hydrocarbon-like OA are thought to be nonhygroscopic (Petters & Kreidenweis, 2007), it shows that the 
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Figure 1.  (a) Diurnal variations of PNSD and κorg on NPF (left panels) and non-NPF days (right panels); The shade regions denote the error bars (±1σ). (b) The 
dependence of κorg on Dp on NPF and non-NPF days during 9:00–15:00 LT. The pie charts embedded in the figure represent the mean volume fraction of five 
OA constituents during 9:00–15:00 LT. (c) The counts (left y-axis) and frequency (right y-axis) distribution of the volume fraction of highly oxidized oxygenated 
OA during 9:00–15:00 LT on NPF and non-NPF days. (d) Dependence of SOA mass concentration on RH and Ox on NPF and non-NPF days during 9:00–15:00 
LT. The mean (circle), median (horizontal line), 25th and 75th percentiles (lower and upper box), and 5th and 95th percentiles (lower and upper whiskers) are 
presented in the figure. NPF, new particle formation; OA, organic aerosol; PNSD, particle number size distribution; RH, relative humidity; SOA, secondary 
organic aerosol.
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former is less hydrophobic with less negative slope than that of the latter one, likely due to the lower ratio 
of O/C of hydrocarbon-like OA in Beijing than that of cooking OA (Sun et al., 2016).

3.3.  Dependence of κorg on f44 and O:C

To evaluate the oxidation degree on hygroscopicity, we assessed the dependence of changes of κorg on the 
variations of f44 and O:C, along with comparison with previous studies (Figure 4). Figure 4a and 4b show 
that there exists little correlation of κorg with f44 and O:C, indicating that both parameters alone cannot rep-
resent or parameterize the hygroscopicity of OA. The weak dependence of hygroscopicity of OA on the ox-
idation degree is attributable to the complex formation and composition of OA in this polluted urban area, 
considering the two growth mechanisms by photooxidation and oligomerization as well as their effects 
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Figure 2.  The dependence of κorg on volume fraction of three OA types on NPF days (red dots) and non-NPF days (blue square) during 9:00–15:00 LT. (a) 
Highly oxidized oxygenated OA; (b) less-oxidized oxygenated OA; and (c) oxidized POA. Different fittings of κorg and ε highly oxidized oxygenated OA are 
represented by lines of different colors: the exponential fit (black); quadratic polynomial fit (green); linear fit (orange). The gray shadow is an auxiliary display 
of exponential fitting. The error bars represent ±1σ. NPF, new particle formation; OA, organic aerosol; POA, primary organic aerosol.

Figure 3.  The dependence of κorg on volume fraction of the five organic components ((a)–(e)) and the contribution (denoted by the slopes of the linear fit of κorg 
vs. volume fraction of the five organics) of each component to κorg (f). The error bars represent ±1σ.
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on the oxidation state and hygroscopicity. A higher f44 occurs more frequently during daytime (around 
10:00–15:00) on NPF days, when an improved correlation (κorg = 1.59 × f44 − 0.05, R2 = 0.61) is obtained 
from the hourly mean κorg as a function of the f44 values (Figure 4c). No apparent improved correlation is 
obtained when we link the κorg to the fCO2

+ (κorg = 1.50 ×  fCO2
+ − 0.03, R2 = 0.57; Figure S4) instead of f44 

on NPF days due to that the CO2
+ ion contributes about ∼90–95% to f44. Also, the correlation between κorg 

and other AMS tracer ions fraction (C2H3O+, CHO+, C3H5O+) is absent (Figure S4). This further demon-
strated that these tracer ions are not sufficient to parameterize the κorg since the OA molecular information 
is missing from the AMS measurements. The evidence of a larger f44 corresponding to higher κorg during 
daytime on NPF days also implies that more hygroscopic OA is mainly produced from strong photochemical 
oxidation during nucleation process. On the other hand, the non-NPF processes result in higher f44 but less 
hygroscopic OA, and thus a poor correlation (Figure 4d), consistent with oligomerization with an increasing 
oxidation but lower κorg. Our result contrasts with those previously observed at remote forest sites by Deng 
et al. (2018) and Chen et al. (2017); both studies showed apparent dependence of κorg on f44, when OA is 
formed from biogenic precursors. At a relative clean site, Zhang et al. (2014; 2016) also found that the high-
er f44 corresponds to high hygroscopicity and CCN activity. The distinct chemical composition, formation 
mechanisms, and the types of VOCs jointly regulate the variation in water uptake capacity of OA with the 
oxidation degree or f44 values (Timonen et al., 2013; Xu et al., 2014, 2017). Therefore, this study provides 
further evidence that the oxidation state alone is insufficient to characterize hygroscopicity, the molecular 
information of OA and unique formation mechanisms should be considered.
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Figure 4.  (a) The κorg versus f44. The dots with different color are f44 correspond to observed time of the day during 
the campaign as shown by the color bar. (b) The κorg versus atomic O:C ratios. The dots with different color are 
atomic O:C ratios correspond to observed time of the day during the campaign as shown by the color bar. Also shown 
for comparison are literature results: ref. 1: Riau and Central Kalimantan, Indonesia (J. Chen et al., 2017); ref. 2: 
Sacramento, USA (Mei et al., 2013); ref. 3: Jungfraujoch and Mexico (Duplissy et al., 2011); ref. 4: Kyoto, Japan (Deng 
et al., 2018); ref. 5: Beijing (Wu et al., 2016). ref. 1–ref. 3: κorg versus f44. ref. 4 and ref. 5: κorg versus O:C ratio. (c) The 
linear fitting of hourly averaged κorg and f44 on NPF days; (d) The linear fitting of hourly averaged κorg and f44 on non-
NPF days. The error bars represent ±1σ.
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3.4.  Comparison of the Field Observed Hygroscopicity of OA with that of Different Kinds of 
Organics

To further obtain insights on the formation of organic aerosols and the link to hygroscopicity of OA, we 
compare the field observed hygroscopicity of secondary formed OA (e.g., highly or less-oxidized oxygenated 
OA) with that of different kinds of organics (Figure 5). The hygroscopic parameter of these SOA (κSOA) is 
calculated by assuming the POA (e.g., cooking or hydrocarbon-like OA) is hydrophobic with κ value of 0. On 
NPF days, these secondary formed OA is very hygroscopic, with mean κSOA of 0.28 ± 0.12, and the value can 
be as high as 0.56. The results show that the water uptake capacity of the OA on NPF days is similar to that 
of organic acids, alkylaminium carboxylates or organic ammonia (Figure 5), which are reported more water 
soluble with κ of about 0.1–0.5 (Kumar et al., 2009; Petters & Kreidenweis, 2007), 0.2–0.66 (Gomez-Hernan-
dez et al., 2016), and 0.17–0.43 (Dinar et al., 2008), respectively. This may indicate that the very hygroscopic 
OA, such as organic acids, carboxylic organic amine and ammonia organic salts may be largely formed 
during the nucleation and growth process on NPF days in polluted urban Beijing. On non-NPF days, the 
mean κSOA is 0.15 ± 0.09, with maximum value of 0.37, showing much weaker water uptake capacity than 
that of obtained during NPF days. The values on non-NPF days are closer to those of organic polymer (e.g., 
methylglyoxal trimer, glyoxal trimer dihydrate [GTD]; Xu et al., 2014) or organosulfates (e.g., benzyl sulfate; 
Estillore et al., 2016). Since the observed ratio of O:C is within the range of about 0.2–0.7 (Figure 4b), the 
organosulfates, which are generally with ratio of O:C of >1.0 (Altieri et al., 2009), should not be the primary 
products during our observed periods. In addition, these photochemical oxidation products of biogenic 
VOCs (e.g., isoprene, m-xylene; Guo et al., 2016; Khalizov et al., 2013; Ma et al., 2013), although which 
are with similar κ to that of our observation, are not expected to be dominant on non-NPF days due to low 
ambient concentrations in Beijing. While it is usually with high levels of anthropogenic VOCs (e.g., toluene, 
benzene) in urban atmosphere (Guo et al., 2020). In summary, the different formation mechanism of OA 
may explain the discrepancy of hygroscopicity of OA on NPF and non-NPF days. It is further demonstrated 
that the OA on NPF days may primarily formed by photooxidation, being more hygroscopic, while the non-
NPF days the mechanism of oligomerization is dominant, yields less hygroscopic products. However, this 
needs to be fully clarified by the specific molecular information of OA in future field measurements.

4.  Conclusions
While OA accounts for large proportion of ambient fine particles, the factors regulating the variations of its 
hygroscopicity remain unclear. Our simultaneous measurements of ambient fine particles chemical compo-
sition and hygroscopic growth factor during summer 2017 in Beijing reveal a remarkably-enhanced κorg on 
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Figure 5.  The κ values for different kinds of organics reported in literatures (1. Guo et al., 2016; 2. Khalizov et al., 2013; 
3. Qiu et al., 2012; 4. Ma et al., 2013; 5-8. Xu et al., 2014; 9. Estillore et al., 2016; 10. Petters and Kreindenweis, 2007; 
Kumar et al., 2009; 11, 12. Gomez-Hernandez et al., 2016; 13. Dinar et al., 2008) and that measured on NPF and non-
NPF days. NPF, new particle formation.
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NPF days compared to non-NPF days. The mean κorg of OA during NPF events is 0.19 ± 0.07, which is about 
73% higher than that during non-NPF events. While non-nucleation processes (e.g., oxidized POA or oli-
gomerization) also produce OA, their hygroscopicity exhibits little enhancement. A correlation between the 
hygroscopicity and oxidation state is absent for OA, indicating that the oxidation degree alone is insufficient 
to characterize hygroscopicity of OA in polluted urban atmosphere. Our results reveal that the measured 
distinct water uptake capacity of OA between NPF and non-NPF events is attributed to the different OA 
growth processes, that is, nucleation-initiated photochemical oxidation of VOCs to produce water-soluble 
products (e.g., organic acids) and aqueous oligomerization to yield less water-soluble products, respectively. 
The specific molecular information of OA warrants to be investigated combining other techniques (e.g., 
off-line ion chromatography) in future to provide direct evidence of our results inferred from the field meas-
urements. Also, it is critical to account for the distinct OA growth mechanisms in atmospheric models for 
evaluation of their impacts on air quality and climate.

Data Availability Statement
All data used in the study are available on https://data.mendeley.com/datasets/3n72dcjdfv/1 or from the 
corresponding author upon request (fang.zhang@bnu.edu.cn).
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